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Abstract

Exclusive theory for analysis of Structural Models (comprising of springs, masses, dash pots, etc.) is
presented by adapting the electrical network theory. It commences a brief statement of a new Principle of
Quasi Work (PQW), relevant to this theory. Derivations presented here include theorems addressing
maximum displacements, relative flexibilities, sensitivity analysis of global flexibilities, inverse problem of
load prediction and interpolation of stiffnesses and flexibilities of the Structural Models. Finally a ‘Design
Equation’ capable of providing a starting point which more or less satisfies all the displacement constraints
for iterative design employing a pair of estimated starting points for design iterations (within or outside
feasible region) is evolved. Simple substantive illustrations are included to demonstrate the potential of these
theoretical developments. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Recognizing the potentials of the development of simplified structural models both for analysis
and design (Harris and Crede, 1988 ; Prasad and Subba Rao, 1989 ; Prasad, 1992) provided the
motivation for the research (Panditta, 1996) on new simplified analytical tools for these models.

In the field of electrical networks, topology is considered as the basis for defining the skeletal
form of networks and Tellegen’s theorem (Paul et al., 1970) is utilized for analyzing Topologically
Similar Systems (TSS). As topology of structural models is similar to that of electrical networks ;
concept of TSS and Tellegen’s theorem are adapted from the field of electrical network into the
realm of structural mechanics resulting in a new energy principle termed as the Principle of Quasi
Work (PQW). The derivation of the principle, its wide applicability and potentials relative to the
existing energy theorems are being concurrently published. Hence, the statement of the theorem
(without proof) and the explanation of the basic concept of “TSS’ is included here briefly for the
sake of completeness.
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If two or more structures (such as, for example a 10 storeyed building and a 100 storeyed
building) can be modelled by an identical set of nodes and branches (even if the branches contain
null elements), these can be termed as topologically similar systems. (In this example, the top non-
existent 90 storeys in the first system contain elements with zero stiffness/mass etc.) Moreover, if
the constraints are changed in any structural system (by restraining some of the degrees of freedom),
the basic topology is not altered. Hence, even such variants can be termed as ‘TSS’. In essence, all
the sets of such group of structures should be governed by a common set of mathematical relations
say [K]{p} = {P}, where [K] is construed to have an identical size (of say 100 x 100) for all the
variants. Thus in the example, cited above, of 10 storeyed and 100 storeyed buildings, stiffness
matrix of the first TSS has only rows 1-10 and columns 1-10 as non-zero elements, yet the pair of
systems are termed as topologically equivalent.

To facilitate addressing various aspects of simplified analysis of models, a number of these
theorems (having their genesis in the network analysis) are derived utilizing stiffness/flexibility
coefficients corresponding to a pair of generalized directions (each of which is pertinent to a global
DOF). A generalized direction is termed as an active direction only if an external force is acting
in that direction, otherwise, it is termed as a passive direction. Further, as structural systems are
modelled by elements having multiple (say, N,) DOFs/node, the ‘N’ DOF of the system can be
subdivided into N, groups with only one corresponding DOF from each of its nodes. To facilitate
ease in illustration of these theorems pertinent to static analysis of structural model comprising of
discrete structural element models (forming the lower end of the element spectrum of FEM); a
typical set of structural models (with a common topological layout, see Fig. 1(A)) and having
single DOF/node are chosen.

Thus, following sections present the theory for the simplified analysis of discrete structural
models together with substantive illustrations and the derivation of a ‘Design Equation’ capable
of providing a starting design point for problems with active displacement constraints.

2. The Principle of Quasi Work (PQW)

In a pair of TSS (m and n), quasi work done by (self equilibrating system of’) external forces of
any one of the systems while going through the corresponding (compatible) displacements of the
other system, is equal to quasi energy due to internal forces of former system while going through
corresponding deformations of the latter system.

In this context it may be relevant to state that the concept of branches is borrowed from electrical
field. However, in structural systems one first identifies the lines of load flow. Each path of low
flow is termed as branch. This branch can have series of simple as well as compound elements.
Each element can have internal force and deformation (relative to its terminal nodes) which can
be utilised to obtain the strain energy stored.

It may be relevant to note that Quasi Work and Quasi Energy expressions relate to a pair of
TSS ‘m’ and ‘n’ (as per definitions given in Tables 1 and 2, respectively) and the application of
PQW to these systems yields :

Unn = Wy o1 {F}, {6}, = {P}al{d], ()

where
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Fig. 1. A set of topologically similar systems. (A) Topological layout of a six element model. (B) (TSS,). (C) (TSS,).

(D) (TSS;).

{F}

{d}}’l

{P}nm

{5}n
Unn(={F}n{c}a)
Won(={P}n{d},)

is internal branch forces of TSS,, ;

is displacement vector of TSS,,;

is external load applied on TSS,, ;

is branch deformation vector of TSS,,;

is quasi energy corresponding to the TSS pair, TSS,, and TSS,, and

is quasi work corresponding to this TSS pair.
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Table 1
Quasi work computations

Node number 1 2 3 4 5 6
(TSS), {P}IT 0 240 0 —120 —120 0
()7 6 10 6 0 0 0
(TSS), {P}ZT 0 0 120 —120 0 0
()} 4 8 12 0 0 0
(TSS); (P} 0 0 160 —40 —80 —40
{d)T 1 2 4 0 0 0
W, = {P}1{d}, 0 +1920 +0 +0 +0 +0
= 1920
W, = {P}i{d}, 0 +0 +720 +0 +0 +0
=720
W= {P}T{d}; 0 +480 +0 +0 +0 +0
=480
Wy = {P}i{d}, 0 +0 +960 +0 +0 +0
=960
Wy = {P}1{d}; 0 +0 +480 +0 +0 +0
=480
Wi, = {P}1{d}, 0 +0 +1920 +0 +0 +0
= 1920

(TSS),: Ky = Kpy =205 Kpp = K3 =30; K,s=Kys=0
(TSS),: Ky = Kipp = Kj3 =30; Ku=Ks=0; Ky=0

(TSS);: kyy = Kip = Kps = 40; Ky = Kpo =205 kys=0

All stiffness coefficients are in kKN/mm

Interchanging the systems in eqn (1) and subtracting the resulting equation from eqn (1), we
obtain:

{F}£{5}71_ {F}nT{é}m = {P},ﬁ{d}n— {P}nT{d}m (2)

Substantive lllustration. Figure 1(A) represents the common topology for a set of structural model
systems (TSS),, (TSS), and (TSS); (see Figs 1(B)—(D). Computations of Quasi Work and Quasi
Energy are detailed in Tables 1 and 2, respectively, and illustrate the PQW.

3. Maximum displacement directions

This is a theorem which can help in identifying global directions where maximum displacement
can occur, which in turn aids a designer to do away with irrelevant displacement constraints.

Statement : Maximum displacement in any passive direction (belonging to a group of generalized
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Table 2
Quasi energy computations

Branch number 1 2 3 4 5 6
(TSS), {F}IT 120 120 —120 —120 0 0
o)1 6 4 —4 —6 0 —10
(TSS), {F}ZT 120 120 120 0 0 0
{5}{ 4 4 4 —12 8 —8
(TSS), {F}T 40 40 80 —80 0 —40
{6)7 1 1 2 —4 3 -2
Uy, = {F}T{5}, 480 +480 —480 + 1440 +0 +0
= 1920
U, = {F}7{6}, 720 +480 —480 +0 +0 +0
=720
Uy, = {F}T{6}, 120 +120 —240 +480 +0 +0
= 480
Uy, = {F}1{5}, 240 +160 —320 +480 +0 +400
= 960
Uy = {F}7{5}; 120 +120 +240 +0 +0 +0
= 480
Uy, = {F}1{5}, 160 +160 +320 +960 +0 +320
= 1920

From Tables 1 and 2: U,,, = W,,, [for (TSS),, and (TSS),]

directions) cannot exceed the maximum displacement among active directions (belonging to the same
group) provided there are no transformable linkages.

The term ‘transformable linkage’ needs some explanation. In structural/mechanical systems
consisting of levers, gears, etc. one comes across displacement and force transformations arising
out of the linkages. In such systems, displacements/forces can be transformed in order that the
existence of the link can be totally removed during analysis. Such linkages are termed as trans-
formable linkages. For example, in electrical systems, the circuit preceeding the transformer and
succeeding the transformer are referred to as primary and secondary sides of the transformer,
respectively. Whereas, the circuit can be replaced by suitable arrangement of the elements to one
of the sides only (on the basis energy equivalence). Similar situation arises even in struc-
tures/machines with levers/gears. This theorem excludes such scaled systems in the original form
from its preview of finding out the maximum displacement, etc. However, in the case of such
systems, this theorem is definitely applicable to any of its equivalent systems derived (based on
energy equivalence) after removing all such linkages through appropriate transformations of all
relevant elements a priori.

Proof: (Reduxo Absurdum). Consider a model, (TSS),,, having a single group of DOF obtained
by suitably restricting DOF of each node to one (say for example, axial direction) and a given set
of applied loads acting in some of these directions. Due to this simplification, active directions
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Table 3
Correlations between active and maximum displacement directions

Loads (kN) Displacements (mm)

P, P, P, d, d, dy

30 0 0 0.421 0.142 0.203
0 40 0 0.189 0.518 0.218
0 0 50 0.338 0.272 0.763
60 0 50 1.179 0.556 1.168

K, = 2K,, =40 kN/mm; 2K,; = K, = 50 kN/mm
K,, =30 kN/mm; K,s=35kN/mm

become synonymous with active nodes. Assume for the sake of argument that a passive node ‘7’
(P;,, = 0) has displacement more than the maximum displacement among the active nodes. Choose
a (TSS), with all nodes except node ‘i’ as fixed (i.e. {d/}, has all entries zero except the component
d,, which is equal to unity). Hence, from eqn (1), we have:

{F} {0}, = (P}, {d}, =0 A3)
Only branches connected to node ‘i’ will contribute to the left hand side of the above equation.
As node ‘7’ has maximum displacement relative to all the adjacent nodes in both the TSS, the signs
of corresponding elements of {d}, and {F}, are the same which also correspond to those of (TSS),,
for all the branches connected to this node. Hence, the expression

(F)T{8), >0 @

This leads to a contradiction, falsifying our assumption. Thus, at a passive node maximum
displacement cannot exceed the maximum value occurring at active nodes, provided left hand side
of eqn (3) does not vanish (which forms the exceptional case stated in the theorem). Hence, the
theorem is proved for systems with one DOF per node. However, if it has more than one DOF
per node, the theorem can be proved for each group of DOF separately.

This theorem may be effectively utilized to evolve a conservative design by replacing the dis-
placement constraints in all active directions belonging to a group by the least value among the
displacement constraints of the corresponding group of generalized directions (since, constraints
in all other non-active directions can never be violated and become irrelevant).

Hllustration: The nodal displacements in the example problem together with the chosen set of
branch stiffness parameters are given in Table 3 for four load cases. The bold underlined values
illustrate the occurrence of maximum deflection in one of the active directions only.

4. Relative and conditional flexibilities

The following concept of relative flexibility is useful for evaluating relative strengths in global
directions of a structural model and helps in identifying the most/least flexibility directions.
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Relative flexibility, #;,, for a pair of directions ‘7" and ‘7, is defined as the ratio of their diagonal
flexibility coefficients f; and f;.

This section is devoted to a theorem pertaining to the simplified calculation of relative flexibilities
through evaluation of conditional flexibilities.

The term conditional flexibility, f;;,, refers to the flexibility f; obtained for a TSS created from a
given model (of a structural system) by completely restraining the direction ;.

Statement of the theorem : The relative flexibility, n;,;, of any pair of directions, i’ and 7', is equal to
the ratio of their respective conditional flexibilities, f;;;" and 'f;,’, viz

K f// fjlﬁ

Proof: In order to facilitate independent definitions of all the four flexibility coefficients in eqn (5),
consider four different TSS (‘p’, ‘¢’, ‘¥’ and ‘s’) with identical branch properties but having different
load/fixity conditions in directions ‘7’ and ‘/ as under :

I: (TSS),, in which P, is acting and P,, = 0. Hence,

)

Ji = dy| Py, (6)
II': (TSS),, in which P, is acting and P;, = 0. Hence,
Jir = dig/ Py, (7)
III: (TSS),, in which P, is acting and d,, = 0. Hence,
Jiy = di| Py ®)
IV: (TSS),, in which only P; is acting and d;, = 0. Hence,
Jini = dis| Pjs ©)

Applying eqn (2) for the systems with active nodes, ‘I’ and ‘j°, we have:
Pimdin _Pindim +ijdjn _Pjndjm = {F}nTl{é}n - {F}Z{é}m (10)

The right hand side in this equation vanishes as {F} = {6}"[f;] ' and matrix [f;] is the same for
all the four systems. Hence, eqn (10) reduces to:

Pimdin_Pindim—}_ijdjn_P‘ d/m = 0 (11)

jn

Replacing ‘m’ and ‘n’ successively in the above equation for the following four pairs of TSS: by
(a) ‘p> and ‘q’, (b) ‘¥ and ‘s’, (c) ‘p’ and 7 and (d) ‘¢’ and ‘s’, respectively, and utilizing the
conditions as well as eqns (6)—(10) stated in defining the systems p, g, r, s; result in the following
four equations.

Pyd, = P;d, (12)
Pjrdj.r = Pi,vdir (13)
Pipdir = Pirdip +Pjrdjp (14)
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P.d,= P.d,+P.d (15)
q 57749

Ja™is
Dividing eqn (13) by eqn (12) and rearranging the terms we get :
Pjrd./]) — Pisdiq (16)
L N
Substituting eqns (14), (15) in eqn (16) and utilizing the flexibility coefficients from eqns (6)—(9),
we get:
fi _fy
Sy S
Which leads to eqn (5), proving the theorem for relative flexibilities.

(17)

Hllustration : In view of the importance of this theorem, we shall consider the most general case of
the example problem and provide the illustration algebraically to lend credibility to its power and
use.

The diagonal, conditional and relative flexibilities for the model (Fig. 1(A)) are presented in
Table 4. The entries in rows 5-7 illustrate the theorem on relative flexibilities (except where
conditional flexibilities are zero, in which case the result is obvious).

5. Inverse problem of load prediction

Here, a computationally efficient theorem for the inverse problem of determination of loads in
all directions which can result in a given distribution of element forces, is stated and proved. This
is useful for comparative evaluation of models for their load carrying capabilities and for computing
safe limit for external loading for a model with prescribed or computed (from material and
geometry) set of maximum permissible branch forces.

Statement of the theorem : Applied force in any active direction j’ of a model, (TSS), which can
result in a given distribution of branch forces, F, is given by :

Py = {F}n {0} (18)

where, 0 is the non-dimensional deformation vector corresponding to the unit displacement in direction
7" in (TSS) which is derived from the model by fixing it in all other directions.

Proof: As all {d}, are zero concept d,, which is equal to unity, the right hand side of eqn (1) reduces
to P,,. Left hand side of the equation remains the same except that the branch deformations
correspond to unit displacement i.e. branch deformation vector {4}, takes its non-dimensional
form {d},. Hence, eqn (1) takes the form of eqn (18) on rearrangement.

Hllustration : For demonstrating the estimation of the loads through inverse process, first of all the
direct problem corresponding to arbitrary load vector, {P,}, is solved for the example problem
resulting in displacement vector, {d},, and branch force vector {F},, as given in part I of Table
5. In fact, if the branch force vector corresponds to proof loads (determined for individual
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Table 4
Computations of relative flexibilities

Nodes (i)
Sr. Flexibility
no. coefficients 1 2 3
1 P BC—K2 AC—K3; AB—K2,
Jii D D D
2 S 0 . _ 5
Node 1 is fixed BC—K} BC—K2
; fin c 0 c
Node 2 is fixed AC—K}s AC—K}s
4 i B 4 .
Node 3 is fixed AB—K}, AB—K2,
5 fa | AC—K}s AB— K},
i S S BC—K} BC—Kj,
Ji  Jan BC—Kj; AB—Kp,
6 Mip =7~ = ARk 1 w2
VST P2y AC—Ks AC—K3s
7 S s BC—K#, AC—K}s |
T T fa AB—K2, AB—K2,
where

A=Ky+Kpn+Kys; B=Kpt+Kpn+Kyg, C=Ky+Ky+Ks
D = ABC—AK}, — BK}s—CK}, —2K}, K3, K5

branch/elements based on their material characteristics) then this theorem will yield safe external
loading for the model.

Part II of the table illustrates the above theorem for computing nodal load, P,,, corresponding
to the branch force vector {F},,. Branch deformations {8}, correspond to unit displacement mode
for node j” of (TSS),, reckoned positive if tensile. This constitutes the inverse solution of load
estimation which when compared with the load vector given in Part I completes the illustration.

6. Interpolation of linear systems

In this section, the problem of interpolation of two linear systems having only stiffness elements
is considered in order to facilitate creation of better estimated pair of starting points for design.
The properties of global stiffness and diagonal flexibility coefficients are investigated.

For this purpose, let a discrete structure (TSS),, be created through generation of its branch
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Table 5
Illustration of load estimation

Part I: Direct solution
Assumed applied load {P}] = {—50 95 185} kN
Assumed system parameters :
K, = 2K,, =40 kN/mm; K,, = 30 kN/mm
K, =2K,; = 50 kN/mm; K,s= 35kN/mm
Corresponding displacement vector: {d}7 = {I 2 3} mm
and branch forces {F}} = {40 20 25 —90 70 —100} kN

Part II: Inverse process of load estimation of (TSS),,
{8}, for a unit displacement at

Branch data node /’ with other nodes fixed

No. Nodes Forces O O O

k Nos F, (kN) (=1 (j=2) (=3
1 4-1 40 1 0 0

2 1-2 20 -1 1 0

3 2-3 25 0 -1 1

4 3-5 —-90 0 0 —1

5 1-3 70 -1 0 1

6 2-6 —100 0 -1 0
P, = {F}L {3},= —50 kN 95 kN 185 kN

stiffnesses by a linear interpolation of the corresponding branch stiffness of a pair of topologically
similar discrete structures, (TSS), and (TSS), as under:

(Kpi) e = [0(Kii) ) + (K)o 1/ (004 B) (19)

where, « and f§ are arbitrary positive constants.
For such an interpolation, the relationships which govern the respective stiffness and diagonal
nodal flexibility coefficients are given by :

Statement I (for stiffness coefficients): The global stiffness parameters for any TSS generated
through linear interpolation of a given pair of 'TSS, are equal to the corresponding interpolated values
of their global stiffness parameters.

(K = [0(K), + B(K)y)/ e+ ) (20)
This is a linear interpolation achieved through ‘assembly’ and is too obvious to be proved.

Statement 11 ( for diagonal flexibility coefficients) : If a TSS is generated through a linear interpolation
of a given pair of TSS ; the lower bound for its reciprocal diagonal flexibility coefficient in any of the
directions is given by the interpolated value of corresponding reciprocal coefficients of the pair, i.e.

U = LU )+ BCL5) )/ (24 ) (e2y)
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Proof: Considering the action of external force in a direction j’, for (TSS),,, equation relating
strain energy and external work done is given by :

{Pholdin = ()0 {0} (22)
which on reduction yields (as P; = d/f; and F, = K;;0,) :

E (O
(1/fj/')m = Z < > (Kbk)m (23)

k=1 d/'m

where, B is the total number of branches.
Similarly, for (TSS),, we obtain

B 5 . 2

Aff), = ¥ (d> (Kso), (24)
k=1 Jp

Application of PQW for (TSS), and (TSS),, [i.e. eqn (1)] on reduction yields

B
5kp 5km

(1/f_1'/')1? = Z di d.

k=1 jm

(Kpe)p (25)

Consider the following inequality arising from the summation of positive definite terms:

> [5"’" - 5} (Ky), > 0 (26)
i ldm dy !
which on substituting from eqns (24), (25) and after scaling with a factor ‘o, yields:
B8\
k; <d,m> w(Ky), = a(1/f;), 27

Similarly, considering the pair (TSS), and (TSS),,, we have,
5 5km g
kz} <d.> B(Ki)y = B[S, (28)
= jm

Adding eqns (27), (28) and utilizing eqns (19)—(23) yield the required result.

Statement 11 : If a TSS is generated through a linear interpolation of a given pair of TSS ; the upper
bound for its diagonal flexibility coefficient in any of the directions is given by the reciprocal of the
interpolated value of reciprocals of corresponding coefficients of the pair.

Sim < @+BI ) D)1 fi) g+ B3] (29)
Proof: This is a direct consequence of rearranging the reciprocal of eqn (21).

Illustration: For the common topological layout given in Fig. 1(A); (TSS),, (TSS), and pro-
portionality constants o and f associated with these two systems are first defined then (TSS),, is
created by obtaining its branch elements through linear interpolation of corresponding branch
elements of (TSS), and (TSS),. Stiffness matrix coefficients for systems ‘p’, ‘¢’, ‘m’ and the
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Table 6
Import of linear system interpolations

(a) Assembled stiffness coeflicients and their interpolated values

System K K, Ki; Ky, Ky K33

(TSS), 80 —20 —50 110 —30 120

(TSS), 130 —50 —20 100 —40 90

(TSS),, 110 —38 —-32 104 —36 102

Interpolated values with =4 and f = 6

(TSS),, 110 —38 —-32 104 —36 102

(b) Parameters and reciprocal flexibility coefficients

System K, K, K3 K4 K,s Kie 1/f 1/fo 1/fs3
(TSS), 10 20 30 40 50 60 48.862 84.648 71.548
(TSS), 60 50 40 30 20 10 83.378 54.602 58.762
(TSS), 40 38 36 34 32 30 73.345 66.985 68.326
Interpolated values with « =4 and f =6 69.572 66.631 63.874

interpolated values as per eqn (20) are given in Table 6(a). As can be seen from this table, the
interpolated stiffness coefficients are identical with the corresponding assembled values.

Inverse diagonal flexibility coefficients for the three systems together with the corresponding
interpolated values from systems ‘p’ and ‘¢’ are given in Table 6(b). The values of the reciprocals
of diagonal flexibility coefficients are less than the corresponding actual values for the system ‘n?’,
thereby, demonstrating the applicability of eqn (21). Further, it requires no further evidence, that
the inequality change in respect of the comparison of flexibility coefficients of system ‘»’ and the
interpolation values obtained from systems ‘p’ and ‘¢’. Hence, all the statements concerning
interpolations stand substantiated.

7. Sensitivity evaluation

Sensitivity analysis is an important aspect of optimal design problems. Usually, these are viewed
as either shape optimization (Kikuchi and Horimatsu, 1994 ; Haftka and Grandhi, 1986 ; Choi
and Haug, 1983) for minimum weight or optimization for fully stressed design (Kikuchi and
Horimatsu, 1994 ; Donald, 1994). In the documented methods on sensitivity, the gradients for
displacements/stresses for a particular set of loading conditions are obtained by either finite
difference (Khot, 1994 ; Haug et al. 1985 ; Brayton and Spence, 1985) or from principle of virtual
forces (Akin, 1994 ; Donald, 1994). These coefficients do not truly represent the sensitivity of
flexibility in a global direction, which should be independent of external loading.

In this section, a theorem which relates changes in the diagonal reciprocal flexibility coefficient
in any particular direction due to changes in stiffness of a specific branch will be derived for two
distinct cases. First case is pertinent to infinitesimal changes in branch stiffnesses and the second
is pertinent to finite changes in branch stiffnesses.
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Case 1: Infinitesimal changes in branch parameter

A significant advantage of this part of the theorem lies in determination of sensitivity of flexibility
coefficients in global directions corresponding to variations in branch stiffnesses, through a single
solution to the equations governing the model.

Statement of the theorem : Partial derivative of the reciprocal of a generalized diagonal flexibility
coefficient, 'f;;’, in any direction, j’, with respect to the reciprocal of flexibility, f,.’, of any branch,
‘k’, is equal to the square of the ratio of the corresponding branch deformation, ‘,’, and displacement,
‘d;’, in the direction j’.

ie.

o()fy) _ ok

= 30

0Ulfo) 2 (30)
which can also be written as:

o, _ 1% on

afhk _fg/(djz'

Proof: Either from PQW [i.e. from eqn (1)] or independently from the equation relating the strain
energy and the work done by external loads, we get

{F17{o) = (P} {d] (32)

Replacing the external forces in terms of corresponding displacements and flexibilities and
further restricting the loading to one direction (‘;”) only, this equation reduces to:

{0} L] {0} = d}f; (33)

Recognizing the diagonal nature of [f,] and taking partial derivative of eqn (33) with respect to
any branch flexibility f,,, yields:

a 2
a1 fi) [Z( <) ] a(l/f L7lfi] (34)
or
, 0Lty
%=1 ) (39)

since, d; can be safely assumed not to vary due to infinitesimal changes in f;. This results in eqn
(30) and, hence, eqn (31).
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Sensitivity of diagonal flexibility coefficients

(a) Load displacement data for the three load cases of basic system

Sr. P, P, Py d, d; o, 0, 04 s g
1 100 0 2.05 0.65 1.01 2.05 —1.40 0.37 —1.01 —1.03 —0.65
2 0 200 0 1.30 2.36 1.13 1.30 1.06 —123 —131 —0.17 —2.36
3 0 150 1.52 0.85 2.10 1.52 —0.67 1.24  —-2.10 0.57 —0.85
K, =10; K,, = 20; Ky; = 30: in kKN/mm
K, =40; K,s = 50; K)o = 60: in kKN/mm
(b) Parameters of the basic and the perturbed systems
System K, Ky, K, Ky Kys Ky 1fu 1/f2 1/fs
Basic 10.0 20.0 30.0 40.0 50.0 60.0 48.862 84.648 71.548
1 10.3 20.0 30.0 40.0 50.0 60.0 49.162 84.738 71.705
2 10.0 20.6 30.0 40.0 50.0 60.0 49.140 84.769 71.609
3 10.0 20.0 30.9 40.0 50.0 60.0 48.890 84.890 71.864
4 10.0 20.0 30.0 41.2 50.0 60.0 49.154 84.919 71.747
5 10.0 20.0 30.0 40.0 51.5 60.0 49.238 84.655 71.658
6 10.0 20.0 30.0 40.0 50.0 61.8 49.040 86.448 71.838
(c) Validation of flexibility gradient formula for infinitesimal changes
Branch numbers: K

Direction
() 1 2 3 4 5 6
1 I 1.000 0.466 0.032 0.246 0.254 0.101

11 1.000 0.463 0.031 0.243 0.251 0.099
2 I 0.301 0.203 0.272 0.229 0.005 1.000

I 0.300 0.202 0.268 0.226 0.005 1.000
3 I 0.527 0.103 0.354 1.000 0.075 0.164

IT 0.523 0.102 0.351 0.999 0.074 0.161

- 07/d} s IL— 0(1/f;)/0(1/f )

Hllustration : The process of illustrating sensitivity theorem for infinitesimal changes [i.e. eqn (30)]

in reciprocal diagonal flexibility coefficients is presented for the example problem in Table 7. Table
7(a) presents the global displacement and branch deformation data of the basic system pertinent
to three load cases of single load applications. The flexibility data needed for illustrating changes
in each of the six branches are obtained by inverting the six stiffness matrices (generated by

effecting 3% perturbation of the basic stiffness coefficients in only one of the branches at a time)

are given in Table 7(b). While Table 7(c) provides comparison of flexibility gradients obtained
from displacement data from Table 7(a) [i.e. case I basing on the right hand side expression of eqn
(30)] and the flexibility data from Table 7(b) [i.e. case I, basing on left hand side expression of

eqn (30)]. This establishes a sensitivity theorem, as the difference in these expressions is small.
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Case 2 : Finite changes in branch parameter

This part of the theorem will be useful in deriving a new Design Equation for problems involving
displacement constraints. This equation is unique in the sense that with the use of this equation
one can determine a design which closely (in some cases exactly!) satisfies the displacement
constraints.

Statement of the theorem: The ratio of difference in the reciprocal of flexibility in any specific
generalized direction between a pair of (TSS),, and (TSS),, where (TSS),, is derived from (TSS),, by
altering the flexibility of any particular branch, and the difference in the reciprocal of flexibility of
the altered branch is equal to the ratio of the product of deformations in the chosen branch of the two
TSS and the product of their generalized displacements in the chosen direction.

1/(.fj/’)m - 1/(f//)n . 5kmékn

U —1(fodn  dind, (36)

Proof: Assuming that the systems comprise of stiffness elements only and replacing forces by
corresponding displacements and flexibilities when only direction ‘j’ is active, eqn (2) reduces to:

{5}£[fb]r; ' {5}17 - {5}Z[fb]n_ ' {5})17 = d}'md/'n[l/(.f;j)m - 1/(]{;})17] (37)
If flexibility of only branch, ‘k’, is altered keeping the rest of branch flexibilities the same in both
systems ‘m’ and ‘n’, then this equation reduces to:

(01)m (0)a 1/ (foi)in = 1/ (fi )] = i1/ (f3) 1= 1/ (f)n] (33)
which after rearranging the terms, takes the form of eqn (36), proving the statement. If the systems
are obtained by minor perturbations, eqn (36) reduces to eqn (30) in the limit.

It may be relevant to note that the right hand side of eqn (38) represents differential Quasi Work
expression :

(AW)mn = I/I/vnm - an (39)
Hllustration : The theorem is illustrated for the example problem by doubling the stiffness of its

third branch. Results are presented in Table 8 in which entries in the last two columns are equal,
thus completing the illustration.

Table 8
Flexibility variations for finite changes in branch stiffness

(TSS), obtained by changing K,; to 60 kN/mm

in the basic system (TSS),, see Table 7 1 1

Udm Sia
Direction Load (d), (65), /f)n Om O 1
0) P; iy djy o (o
1 100 2.0186 0.2552 49.5402 0.023 0.023
2 200 2.2042 —0.8585 90.7368 0.203 0.203
3 150 1.8794 0.8701 79.8148 0.276 0.276

(TSS),,: K, =10kN/mm; K, =20kN/mm; K,;=30kN/mm
K,, =40 kN/mm; K,5s=50kN/mm; K, = 60kN/mm
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8. Design equation based on displacement constraints

Recognizing the need for a good starting point for any optimal iterative design scheme, a
systematic method of obtaining such a point is pursued here. It is based on an estimated pair of
starting points for the design parameters (which represent a pair of TSS of the model) and utilizes
displacement constraints in active directions. It yields a starting point which more or less satisfies
all the active displacement constraints.

Finding such a starting point is in itself an optimization problem in the hyperspace defined by
branch stiffnesses and limited by the hyperplanes formed by essential constraints. Objective func-
tion for which can be defined as the absolute value of the sum of difference in the work done by
external forces (a) while going through computed displacements and (b) while going through
the corresponding constraint values, computed for all the directions of essential displacement
constraints.

Consider a model subjected to external loading, { P}, which has to satisfy essential displacement
constraints, {d,,} (of order r), in some of the directions. It may be relevant to note that as the
maximum displacement occurs in one of the active directions, constraints on displacements in
active directions will only be considered as essential. If some of the active direction have no
constraints, the vector of displacement constraints is made up by assuming d,; = d,, to facilitate
ease in handling and ensuring that {d,,} is augmented to become {d,} of order ‘4’ (where ‘4’
represents the number of active directions). The corresponding optimization problem can be
mathematically stated as under:

Objective function :

A
AW = Z P,-(d,» - dc/) (40)
j=1
Constraints :
d<d, j=1,4 (41)
where
d/’ = g(.fbs P)

In order to achieve this objective let us define a pair of TSS, viz (TSS),, and (TSS),, for the
model subjected to the given loading, which may be or may not satisfy the constrains. Let us
assume that there exists another system, (TSS),, a linear objective of the given systems, which
represents a near optimum design. In arriving at such a system an assumption is made that each
of its branch elements can be obtained on the basis of proportional contributions to the objective
function. Mathematically this assumption can be stated as

(Aw)nrk . (Aw)nr
(Aw)mrk B (Aw)mr

where, (AW),,, and (AW),,, are defined as the contributions due to branch ‘.4’ to (AW),, and
(AW),,., respectively. Considering pairs of TSS ‘n” and ‘r” as well as ‘nm’ and ‘7, it follows from eqn
(38) and eqn (39) that

(42)
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(o) = 1 (3t} (61),(1) 0 = (AW) 1k (43)
and
e = 1 o)} (00, (0) e = (AW, (44)
Dividing eqn (43) by eqn (44) and utilizing eqn (42), we obtain
G =1} O AW (AW),,

=Gl G~ AW — B, 43)
or

W=} 11

W1 oomd % B (46)
where

o = (03)/(01)n
and

B =AW),,[(AW),
Solving eqn (46) for (1/f,:), we obtain the ‘Design Equation’:

(L) = (Ufoidn+ [A o0 — AL o) ] 03] (B — 0] (47)

With the help of which, values of the branch flexibilities are obtained by choosing {d}, such that
displacement values in all the constrained directions are exactly equal to the stipulated constraints.
This will liquidate the difference in the work done arising out of partial non-satisfaction of the
constraints and thereby yield the optimum value of the objective function.

The above mechanism of approximating the optimum becomes more error prone if some of the
active directions are unconstrained. This discrepancy is due to the fact that the contribution to
AW in eqn (40) for such directions is ignored in the absence of a criterion for computation. This
implies that the displacement constraints in the active direction are assumed to be different, while
computing AW for each of the two systems, which is the root cause for error.

Some essential aspects of design equation
Some of the important facets of Design Equation are as follows:

(1) This method of obtaining an improved starting point commences with an estimated pair of
starting points, which while representing the physical model, may or may not belong to the
feasible region of the design hyper-space.

(2) The improved design point is a linear combination of the chosen estimated pair of starting
points and is obtained with the help of ‘Design Equation’ [i.e. eqn (47)].

(3) If in a model, flexibility of a branch is desired to be fixed by some other considerations ;
then choosing identical flexibility coefficient of this branch for the estimated pair of starting
points ensures that it would remain the same in the resulting TSS.

(4) If all branch flexibilities of (TSS),, are proportional to those of (TSS),, then flexibilities of
derived system, (TSS),, are also proportional to flexibilities of the chosen pair of TSS.
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Table 9
Determination of design point (TSS),
Branch no. {Kp} {Kp} {6}, {6} o (K},
1 40.00 100.00 8.3298 3.0137 0.3618 152.2948
2 20.00 65.00 —0.8488 —0.4491 0.5291 86.0315
3 25.00 75.00 2.2812 0.7401 0.3244 129.0372
4 30.00 95.00 —9.7613 —3.3047 0.3386 159.4099
5 35.00 105.00 1.4324 0.2910 0.2032 445.3573
6 50.00 150.00 —7.4801 —2.5646 0.3429 246.6427
{P}"= {300 300 400} kN
and utilising AW from Table 10,
B =AW, /(AW), = 0.1685
Table 10
Evaluation of design equation application
Systems (TSS), (TSS),, (TSS),
d, value 8.3289 3.0137 1.9365
% error* (316.5) (50.7) (3.17)
d, value 7.4801 2.5646 1.5685
% error*® (398.7) (71.0) (4.57)
d; value 9.7613 3.3047 1.9962
% error* (388.1) (65.2) (0.188)
AW 6797.2 1145.3 0.0000
* With respect to their constraint values {d,}" =[2.0 1.5 1.0] mm

Hllustration : In order to illustrate the computation of the starting design point, a model conforming
to the topological layout given in Fig. 1(A) is utilized. The initial guess values of branch stiffnesses
of (TSS), and (TSS),, along with other relevant data and resulting parameters of the system (TSS),

are given in Table 9.

Effectiveness of application of the design equation is illustrated in Table 10 by providing a
comparison of the global displacements and the objective function for all the three systems.
Numbers in parenthesis are percentage errors in displacements with respect to the corresponding
constraint values. As can be seen that the displacements in (TSS), are very close to the required
constraint values. In this example, units of stiffness, displacement and AW are chosen as kIN/mm,

mm and Nm, respectively.
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9. Conclusions

The simplified theory for analysis and design of structural models (defined in terms of discrete
element models with single DOF/node) is presented. A number of theorems and formulae were
derived to facilitate :

e Locating maximum displacement directions for eliminating spurious constraints and for aiding
conservative preliminary design process by reduction of number of displacement constraints.

e Simplified computation of relative flexibilities ( for determination of strong/weak directions in a
structure).

e Calculation of external loads corresponding to a prescribed/permissible set of branch forces for
design evaluation.

e Determination of upper bounds for global diagonal flexibility coefficients based on branch
parameters.

e Evaluation of sensitivity of global flexibility coefficients with respect to branch parameters for
carrying out efficient design iterations.

With the help of sensitivity analysis (for finite changes in branch/element parameters), an
important equation termed as ‘Design Equation’ was derived. This provides a good starting design
point for problems with active displacement constraints.

The scope of present theorems need extension considering elements other than stiffness and
constraints other than on displacements. Yet, the sensitivity theorem has opened up new avenues
for evolving a new ‘Predicted Correction Algorithm’ useful for design and forming an integral part
of an overall activity termed as Computer Aided Model Based Design (CAMBD). A pilot version
of which has already incorporated these theoretical developments (Prasad et al., 1995) and is in
the advanced stage of testing. Where the examples include the design of a shear building consisting
of columns (modelled as shear spring) and floors modelled as lumped masses, etc. Further work
concerning its extension to 2-D structures involving automobile vehicle structures, modelling is in
progress. However, further work is needed for extending the methodology to 3-D structural
systems.
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