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Abstract

Exclusive theory for analysis of Structural Models "comprising of springs\ masses\ dash pots\ etc[# is
presented by adapting the electrical network theory[ It commences a brief statement of a new Principle of
Quasi Work "PQW#\ relevant to this theory[ Derivations presented here include theorems addressing
maximum displacements\ relative ~exibilities\ sensitivity analysis of global ~exibilities\ inverse problem of
load prediction and interpolation of sti}nesses and ~exibilities of the Structural Models[ Finally a {Design
Equation| capable of providing a starting point which more or less satis_es all the displacement constraints
for iterative design employing a pair of estimated starting points for design iterations "within or outside
feasible region# is evolved[ Simple substantive illustrations are included to demonstrate the potential of these
theoretical developments[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Recognizing the potentials of the development of simpli_ed structural models both for analysis
and design "Harris and Crede\ 0877 ^ Prasad and Subba Rao\ 0878 ^ Prasad\ 0881# provided the
motivation for the research "Panditta\ 0885# on new simpli_ed analytical tools for these models[

In the _eld of electrical networks\ topology is considered as the basis for de_ning the skeletal
form of networks and Tellegen|s theorem "Paul et al[\ 0869# is utilized for analyzing Topologically
Similar Systems "TSS#[ As topology of structural models is similar to that of electrical networks ^
concept of TSS and Tellegen|s theorem are adapted from the _eld of electrical network into the
realm of structural mechanics resulting in a new energy principle termed as the Principle of Quasi
Work "PQW#[ The derivation of the principle\ its wide applicability and potentials relative to the
existing energy theorems are being concurrently published[ Hence\ the statement of the theorem
"without proof# and the explanation of the basic concept of {TSS| is included here brie~y for the
sake of completeness[
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If two or more structures "such as\ for example a 09 storeyed building and a 099 storeyed
building# can be modelled by an identical set of nodes and branches "even if the branches contain
null elements#\ these can be termed as topologically similar systems[ "In this example\ the top non!
existent 89 storeys in the _rst system contain elements with zero sti}ness:mass etc[# Moreover\ if
the constraints are changed in any structural system "by restraining some of the degrees of freedom#\
the basic topology is not altered[ Hence\ even such variants can be termed as {TSS|[ In essence\ all
the sets of such group of structures should be governed by a common set of mathematical relations
say ðKŁ"r# � "P#\ where ðKŁ is construed to have an identical size "of say 099×099# for all the
variants[ Thus in the example\ cited above\ of 09 storeyed and 099 storeyed buildings\ sti}ness
matrix of the _rst TSS has only rows 0Ð09 and columns 0Ð09 as non!zero elements\ yet the pair of
systems are termed as topologically equivalent[

To facilitate addressing various aspects of simpli_ed analysis of models\ a number of these
theorems "having their genesis in the network analysis# are derived utilizing sti}ness:~exibility
coe.cients corresponding to a pair of generalized directions "each of which is pertinent to a global
DOF#[ A generalized direction is termed as an active direction only if an external force is acting
in that direction\ otherwise\ it is termed as a passive direction[ Further\ as structural systems are
modelled by elements having multiple "say\ ND# DOFs:node\ the {N| DOF of the system can be
subdivided into ND groups with only one corresponding DOF from each of its nodes[ To facilitate
ease in illustration of these theorems pertinent to static analysis of structural model comprising of
discrete structural element models " forming the lower end of the element spectrum of FEM# ^ a
typical set of structural models "with a common topological layout\ see Fig[ 0"A## and having
single DOF:node are chosen[

Thus\ following sections present the theory for the simpli_ed analysis of discrete structural
models together with substantive illustrations and the derivation of a {Design Equation| capable
of providing a starting design point for problems with active displacement constraints[

1[ The Principle of Quasi Work "PQW#

In a pair of TSS "m and n#\ quasi work done by "self equilibratin` system of # external forces of
any one of the systems while `oin` throu`h the correspondin` "compatible# displacements of the
other system\ is equal to quasi ener`y due to internal forces of former system while `oin` throu`h
correspondin` deformations of the latter system[

In this context it may be relevant to state that the concept of branches is borrowed from electrical
_eld[ However\ in structural systems one _rst identi_es the lines of load ~ow[ Each path of low
~ow is termed as branch[ This branch can have series of simple as well as compound elements[
Each element can have internal force and deformation "relative to its terminal nodes# which can
be utilised to obtain the strain energy stored[

It may be relevant to note that Quasi Work and Quasi Energy expressions relate to a pair of
TSS {m| and {n| "as per de_nitions given in Tables 0 and 1\ respectively# and the application of
PQW to these systems yields ]

Umn � Wmn or "F#T
m"d#n � "P#T

m"d#n "0#

where
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Fig[ 0[ A set of topologically similar systems[ "A# Topological layout of a six element model[ "B# "TSS0#[ "C# "TSS1#[
"D# "TSS2#[

"F#T
m is internal branch forces of TSSm ^

"d#n is displacement vector of TSSn ^
"P#T

m is external load applied on TSSm ^
"d#n is branch deformation vector of TSSn ^

Umn"�"F#T
m"s#n# is quasi energy corresponding to the TSS pair\ TSSm and TSSn\ and

Wmn"�"P#T
m"d#n# is quasi work corresponding to this TSS pair[
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Table 0
Quasi work computations

Node number 0 1 2 3 4 5

"TSS#0 "P#T
0 9 139 9 −019 −019 9

"d#T
0 5 09 5 9 9 9

"TSS#1 "P#T
1 9 9 019 −019 9 9

"d#T
1 3 7 01 9 9 9

"TSS#2 "P#T
2 9 9 059 −39 −79 −39

"d#T
2 0 1 3 9 9 9

W01 � "P#T
0"d#1 9 ¦0819 ¦9 ¦9 ¦9 ¦9

� 0819
W10 � "P#T

1"d#0 9 ¦9 ¦619 ¦9 ¦9 ¦9
� 619

W02 � "P#T
0"d#2 9 ¦379 ¦9 ¦9 ¦9 ¦9

� 379
W20 � "P#T

2"d#0 9 ¦9 ¦859 ¦9 ¦9 ¦9
� 859

W12 � "P#T
1"d#2 9 ¦9 ¦379 ¦9 ¦9 ¦9

� 379
W21 � "P#T

2"d#1 9 ¦9 ¦0819 ¦9 ¦9 ¦9
� 0819

"TSS#0 ] Kb0 � Kb3 � 19 ^ Kb1 � Kb2 � 29 ^ Kb4 � Kb5 � 9
"TSS#1 ] Kb0 � Kb1 � Kb2 � 29 ^ Kb3 � Kb4 � 9 ^ Kb5 � 9
"TSS#2 ] kb0 � Kb1 � Kb2 � 39 ^ Kb3 � Kb5 � 19 ^ kb4 � 9
All sti}ness coe.cients are in kN:mm

Interchanging the systems in eqn "0# and subtracting the resulting equation from eqn "0#\ we
obtain ]

"F#T
m"d#n−"F#T

n "d#m � "P#T
m"d#n−"P#T

n "d#m "1#

Substantive Illustration[ Figure 0"A# represents the common topology for a set of structural model
systems "TSS#0\ "TSS#1 and "TSS#2 "see Figs 0"B#Ð"D#[ Computations of Quasi Work and Quasi
Energy are detailed in Tables 0 and 1\ respectively\ and illustrate the PQW[

2[ Maximum displacement directions

This is a theorem which can help in identifying global directions where maximum displacement
can occur\ which in turn aids a designer to do away with irrelevant displacement constraints[

Statement ] Maximum displacement in any passive direction "belon`in` to a `roup of `eneralized
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Table 1
Quasi energy computations

Branch number 0 1 2 3 4 5

"TSS#0 "F#T
0 019 019 −019 −019 9 9

"d#T
0 5 3 −3 −5 9 −09

"TSS#1 "F#T
1 019 019 019 9 9 9

"d#T
1 3 3 3 −01 7 −7

"TSS#2 "F#T
2 39 39 79 −79 9 −39

"d#T
2 0 0 1 −3 2 −1

U01 � "F#T
0"d#1 379 ¦379 −379 ¦0339 ¦9 ¦9

� 0819
U10 � "F#T

1"d#0 619 ¦379 −379 ¦9 ¦9 ¦9
� 619

U02 � "F#T
0"d#2 019 ¦019 −139 ¦379 ¦9 ¦9

� 379
U20 � "F#T

2"d#0 139 ¦059 −219 ¦379 ¦9 ¦399
� 859

U12 � "F#T
1"d#2 019 ¦019 ¦139 ¦9 ¦9 ¦9

� 379
U21 � "F#T

2"d#1 059 ¦059 ¦219 ¦859 ¦9 ¦219
� 0819

From Tables 0 and 1 ] Umn � Wmn ðfor "TSS#m and "TSS#nŁ

directions# cannot exceed the maximum displacement amon` active directions "belon`in` to the same
`roup# provided there are no transformable linka`es[

The term {transformable linka`e| needs some explanation[ In structural:mechanical systems
consisting of levers\ gears\ etc[ one comes across displacement and force transformations arising
out of the linkages[ In such systems\ displacements:forces can be transformed in order that the
existence of the link can be totally removed during analysis[ Such linkages are termed as trans!
formable linkages[ For example\ in electrical systems\ the circuit preceeding the transformer and
succeeding the transformer are referred to as primary and secondary sides of the transformer\
respectively[ Whereas\ the circuit can be replaced by suitable arrangement of the elements to one
of the sides only "on the basis energy equivalence#[ Similar situation arises even in struc!
tures:machines with levers:gears[ This theorem excludes such scaled systems in the original form
from its preview of _nding out the maximum displacement\ etc[ However\ in the case of such
systems\ this theorem is de_nitely applicable to any of its equivalent systems derived "based on
energy equivalence# after removing all such linkages through appropriate transformations of all
relevant elements a priori[

Proof ] "Reduxo Absurdum#[ Consider a model\ "TSS#m\ having a single group of DOF obtained
by suitably restricting DOF of each node to one "say for example\ axial direction# and a given set
of applied loads acting in some of these directions[ Due to this simpli_cation\ active directions
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Table 2
Correlations between active and maximum displacement directions

Loads "kN# Displacements "mm#

P0 P1 P2 d0 d1 d2

29 9 9 9[310 9[031 9[192
9 39 9 9[078 9[407 9[107
9 9 49 9[227 9[161 9[652

59 9 49 0[068 9[445 0[057

Kb0 � 1Kb1 � 39 kN:mm ^ 1Kb2 � Kb5 � 49 kN:mm
Kb3 � 29 kN:mm ^ Kb4 � 24 kN:mm

become synonymous with active nodes[ Assume for the sake of argument that a passive node {i|
"Pim � 9# has displacement more than the maximum displacement among the active nodes[ Choose
a "TSS#n with all nodes except node {i| as _xed "i[e[ "d#n has all entries zero except the component
din which is equal to unity#[ Hence\ from eqn "0#\ we have ]

"F#T
m"d#n � "P#m"d#n � 9 "2#

Only branches connected to node {i| will contribute to the left hand side of the above equation[
As node {i| has maximum displacement relative to all the adjacent nodes in both the TSS\ the signs
of corresponding elements of "d#n and "F#n are the same which also correspond to those of "TSS#m

for all the branches connected to this node[ Hence\ the expression

"F#T
m"d#n × 9 "3#

This leads to a contradiction\ falsifying our assumption[ Thus\ at a passive node maximum
displacement cannot exceed the maximum value occurring at active nodes\ provided left hand side
of eqn "2# does not vanish "which forms the exceptional case stated in the theorem#[ Hence\ the
theorem is proved for systems with one DOF per node[ However\ if it has more than one DOF
per node\ the theorem can be proved for each group of DOF separately[

This theorem may be e}ectively utilized to evolve a conservative design by replacing the dis!
placement constraints in all active directions belonging to a group by the least value among the
displacement constraints of the corresponding group of generalized directions "since\ constraints
in all other non!active directions can never be violated and become irrelevant#[

Illustration ] The nodal displacements in the example problem together with the chosen set of
branch sti}ness parameters are given in Table 2 for four load cases[ The bold underlined values
illustrate the occurrence of maximum de~ection in one of the active directions only[

3[ Relative and conditional ~exibilities

The following concept of relative ~exibility is useful for evaluating relative strengths in global
directions of a structural model and helps in identifying the most:least ~exibility directions[
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Relative ~exibility\ hi:j\ for a pair of directions {i| and {j|\ is de_ned as the ratio of their diagonal
~exibility coe.cients fii and fjj[

This section is devoted to a theorem pertaining to the simpli_ed calculation of relative ~exibilities
through evaluation of conditional ~exibilities[

The term conditional ~exibility\ fii:j\ refers to the ~exibility fii obtained for a TSS created from a
given model "of a structural system# by completely restraining the direction {j|[

Statement of the theorem ] The relative ~exibility\ hi:j\ of any pair of directions\ {i | and {j|\ is equal to
the ratio of their respective conditional ~exibilities\ {fii:j| and {fjj:i|\ viz

hi:j �
fii
fjj

�
fii:j
fjj:i

"4#

Proof ] In order to facilitate independent de_nitions of all the four ~exibility coe.cients in eqn "4#\
consider four di}erent TSS "{p|\ {q|\ {r| and {s|# with identical branch properties but having di}erent
load:_xity conditions in directions {i| and {j| as under ]

I ] "TSS#p\ in which Pip is acting and Pjp � 9[ Hence\

fii � dip:Pip "5#

II ] "TSS#q\ in which Pjq is acting and Piq � 9[ Hence\

fjj � djq:Pjq "6#

III ] "TSS#r\ in which Pir is acting and djr � 9[ Hence\

fii:j � dir:Pir "7#

IV ] "TSS#s\ in which only Pjs is acting and dis � 9[ Hence\

fjj:i � djs:Pjs "8#

Applying eqn "1# for the systems with active nodes\ {i| and {j|\ we have ]

Pimdin−Pindim¦Pjmdjn−Pjndjm � "F#T
m"d#n−"F#T

n "d#m "09#

The right hand side in this equation vanishes as "F# � "d#Tð fbŁ−0 and matrix ð fbŁ is the same for
all the four systems[ Hence\ eqn "09# reduces to ]

Pimdin−Pindim¦Pjmdjn−Pjndjm � 9 "00#

Replacing {m| and {n| successively in the above equation for the following four pairs of TSS ] by
"a# {p| and {q|\ "b# {r| and {s|\ "c# {p| and {r| and "d# {q| and {s|\ respectively\ and utilizing the
conditions as well as eqns "5#Ð"09# stated in de_ning the systems p\ q\ r\ s ^ result in the following
four equations[

Pipdiq � Pjqdjp "01#

Pjrdjs � Pisdir "02#

Pipdir � Pirdip¦Pjrdjp "03#
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Pjqdjs � Pisdiq¦Pjsdjq "04#

Dividing eqn "02# by eqn "01# and rearranging the terms we get ]

Pjrdjp

Pipdir

�
Pisdiq

Pjqdjs

"05#

Substituting eqns "03#\ "04# in eqn "05# and utilizing the ~exibility coe.cients from eqns "5#Ð"8#\
we get ]

fii
fii:j

�
fjj

fjj:i

"06#

Which leads to eqn "4#\ proving the theorem for relative ~exibilities[

Illustration ] In view of the importance of this theorem\ we shall consider the most general case of
the example problem and provide the illustration algebraically to lend credibility to its power and
use[

The diagonal\ conditional and relative ~exibilities for the model "Fig[ 0"A## are presented in
Table 3[ The entries in rows 4Ð6 illustrate the theorem on relative ~exibilities "except where
conditional ~exibilities are zero\ in which case the result is obvious#[

4[ Inverse problem of load prediction

Here\ a computationally e.cient theorem for the inverse problem of determination of loads in
all directions which can result in a given distribution of element forces\ is stated and proved[ This
is useful for comparative evaluation of models for their load carrying capabilities and for computing
safe limit for external loading for a model with prescribed or computed " from material and
geometry# set of maximum permissible branch forces[

Statement of the theorem ] Applied force in any active direction {j| of a model\ "TSS#\ which can
result in a `iven distribution of branch forces\ F\ is `iven by ]

Pjm � "F#m"d¹#n "07#

where\ d is the non!dimensional deformation vector correspondin` to the unit displacement in direction
{j| in "TSS# which is derived from the model by _xin` it in all other directions[

Proof ] As all "d#n are zero concept djn which is equal to unity\ the right hand side of eqn "0# reduces
to Pjm[ Left hand side of the equation remains the same except that the branch deformations
correspond to unit displacement i[e[ branch deformation vector "d#n takes its non!dimensional
form "d¹#n[ Hence\ eqn "0# takes the form of eqn "07# on rearrangement[

Illustration ] For demonstrating the estimation of the loads through inverse process\ _rst of all the
direct problem corresponding to arbitrary load vector\ "Pm#\ is solved for the example problem
resulting in displacement vector\ "d#m\ and branch force vector "F#m as given in part I of Table
4[ In fact\ if the branch force vector corresponds to proof loads "determined for individual
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Table 3
Computations of relative ~exibilities

Nodes "i#
Sr[ Flexibility
no[ coe.cients 0 1 2

0 fii
BC−K1

b2

D
AC−K1

b4

D
AB−K1

b1

D

fii:01 9
C

BC−K1
b2

B

BC−K1
b2

Node 0 is _xed

fii:12
C

AC−K1
b4

9
C

AC−K1
b4

Node 1 is _xed

fii:23
B

AB−K1
b1

A

AB−K1
b1

9
Node 2 is _xed

4 hi:0 �
fii
f00

�
fii:0
f00:i

0
AC−K1

b4

BC−K1
b2

AB−K1
b1

BC−K1
b2

5 hi:1 �
fii
f11

�
fii:1
f11:i

BC−K1
b2

AC−K1
b4

0
AB−K1

b1

AC−K1
b4

6 hi:2 �
fii
f22

�
fii:2
f22:i

BC−K1
b2

AB−K1
b1

AC−K1
b4

AB−K1
b1

0

where
A � Kb0¦Kb1¦Kb4 ^ B � Kb1¦Kb2¦Kb5 ^ C � Kb2¦Kb3¦Kb4

D � ABC−AK1
b2−BK1

b4−CK1
b1−1K1

b1K
1
b2K

1
b4

branch:elements based on their material characteristics# then this theorem will yield safe external
loading for the model[

Part II of the table illustrates the above theorem for computing nodal load\ Pjm\ corresponding
to the branch force vector "F#m[ Branch deformations "d¹#n correspond to unit displacement mode
for node {j| of "TSS#n\ reckoned positive if tensile[ This constitutes the inverse solution of load
estimation which when compared with the load vector given in Part I completes the illustration[

5[ Interpolation of linear systems

In this section\ the problem of interpolation of two linear systems having only sti}ness elements
is considered in order to facilitate creation of better estimated pair of starting points for design[
The properties of global sti}ness and diagonal ~exibility coe.cients are investigated[

For this purpose\ let a discrete structure "TSS#m be created through generation of its branch
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Table 4
Illustration of load estimation

Part I ] Direct solution
Assumed applied load "P#T

m � "−49 84 074# kN
Assumed system parameters ]

Kb0 � 1Kb1 � 39 kN:mm ^ Kb3 � 29 kN:mm
Kb5 � 1Kb2 � 49 kN:mm ^ Kb4 � 24 kN:mm

Corresponding displacement vector ] "d#T
m � "0 1 2# mm

and branch forces "F#T
m � "39 19 14 −89 69 −099# kN

Part II ] Inverse process of load estimation of "TSS#m

"d¹#n for a unit displacement at
Branch data node {j| with other nodes _xed

No[ Nodes Forces d¹k d¹k d¹k

k Nos Fk "kN# " j � 0# " j � 1# " j � 2#

0 3Ð0 39 0 9 9
1 0Ð1 19 −0 0 9
2 1Ð2 14 9 −0 0
3 2Ð4 −89 9 9 −0
4 0Ð2 69 −0 9 0
5 1Ð5 −099 9 −0 9
Pjm � "F#T

m "d¹#nc −49 kN 84 kN 074 kN

sti}nesses by a linear interpolation of the corresponding branch sti}ness of a pair of topologically
similar discrete structures\ "TSS#p and "TSS#q as under ]

"Kbk#m � ða"Kbk#p¦b"Kbk#qŁ:"a¦b# "08#

where\ a and b are arbitrary positive constants[
For such an interpolation\ the relationships which govern the respective sti}ness and diagonal

nodal ~exibility coe.cients are given by ]

Statement I " for stiffness coef_cients# ] The `lobal stiffness parameters for any TSS `enerated
throu`h linear interpolation of a `iven pair of TSS\ are equal to the correspondin` interpolated values
of their `lobal stiffness parameters[

"Kij#m � ða"Kij#p¦b"Kij#qŁ:"a¦b# "19#

This is a linear interpolation achieved through {assembly| and is too obvious to be proved[

Statement II " for dia`onal ~exibility coef_cients# ] If a TSS is `enerated throu`h a linear interpolation
of a `iven pair of TSS ^ the lower bound for its reciprocal dia`onal ~exibility coef_cient in any of the
directions is `iven by the interpolated value of correspondin` reciprocal coef_cients of the pair\ i[e[

"0:fjj#m − ða"0:fjj#p¦b"0:fjj#qŁ:"a¦b# "10#
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Proof ] Considering the action of external force in a direction {j|\ for "TSS#m\ equation relating
strain energy and external work done is given by ]

"P#T
m"d#m � "F#T

m"d#m "11#

which on reduction yields "as Pj � dj:fjj and Fk � Kbkdk# ]

"0:fjj#m � s
B

k�0 0
dkm

djm1
1

"Kbk#m "12#

where\ B is the total number of branches[
Similarly\ for "TSS#p\ we obtain

"0:fjj#p � s
B

k�0 0
dkp

djp1
1

"Kbk#p "13#

Application of PQW for "TSS#p and "TSS#m ði[e[ eqn "0#Ł on reduction yields

"0:fjj#p � s
B

k�0

dkp

djp

dkm

djm

"Kbk#p "14#

Consider the following inequality arising from the summation of positive de_nite terms ]

s
B

k�0 $
dkm

djm

−
dkp

djp%
1

"Kbk#p − 9 "15#

which on substituting from eqns "13#\ "14# and after scaling with a factor {a|\ yields ]

s
B

k�0 0
dkm

djm1
1

a"Kbk#p − a"0:fjj#p "16#

Similarly\ considering the pair "TSS#q and "TSS#m\ we have\

s
B

k�0 0
dkm

djm1
1

b"Kbk#q − b"0:fjj#q "17#

Adding eqns "16#\ "17# and utilizing eqns "08#Ð"12# yield the required result[

Statement II ] If a TSS is `enerated throu`h a linear interpolation of a `iven pair of TSS ^ the upper
bound for its dia`onal ~exibility coef_cient in any of the directions is `iven by the reciprocal of the
interpolated value of reciprocals of correspondin` coef_cients of the pair[

" fjj#m ¾"a¦b#ð" fjj#p" fjj#qŁ:ða" fjj#q¦b" fjj#pŁ "18#

Proof ] This is a direct consequence of rearranging the reciprocal of eqn "10#[

Illustration ] For the common topological layout given in Fig[ 0"A# ^ "TSS#p\ "TSS#q and pro!
portionality constants a and b associated with these two systems are _rst de_ned then "TSS#m is
created by obtaining its branch elements through linear interpolation of corresponding branch
elements of "TSS#p and "TSS#q[ Sti}ness matrix coe.cients for systems {p|\ {q|\ {m| and the
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Table 5
Import of linear system interpolations

"a# Assembled sti}ness coe.cients and their interpolated values
System K00 K01 K02 K11 K12 K22

"TSS#p 79 −19 −49 009 −29 019
"TSS#q 029 −49 −19 099 −39 89
"TSS#m 009 −27 −21 093 −25 091
Interpolated values with a � 3 and b � 5
"TSS#m 009 −27 −21 093 −25 091

"b# Parameters and reciprocal ~exibility coe.cients
System Kb0 Kb1 Kb2 Kb3 Kb4 Kb5 0:f00 0:f11 0:f22

"TSS#p 09 19 29 39 49 59 37[751 73[537 60[437
"TSS#q 59 49 39 29 19 09 72[267 43[591 47[651
"TSS#r 39 27 25 23 21 29 62[234 55[874 57[215
Interpolated values with a � 3 and b � 5 58[461 55[520 52[763

interpolated values as per eqn "19# are given in Table 5"a#[ As can be seen from this table\ the
interpolated sti}ness coe.cients are identical with the corresponding assembled values[

Inverse diagonal ~exibility coe.cients for the three systems together with the corresponding
interpolated values from systems {p| and {q| are given in Table 5"b#[ The values of the reciprocals
of diagonal ~exibility coe.cients are less than the corresponding actual values for the system {m|\
thereby\ demonstrating the applicability of eqn "10#[ Further\ it requires no further evidence\ that
the inequality change in respect of the comparison of ~exibility coe.cients of system {m| and the
interpolation values obtained from systems {p| and {q|[ Hence\ all the statements concerning
interpolations stand substantiated[

6[ Sensitivity evaluation

Sensitivity analysis is an important aspect of optimal design problems[ Usually\ these are viewed
as either shape optimization "Kikuchi and Horimatsu\ 0883 ^ Haftka and Grandhi\ 0875 ^ Choi
and Haug\ 0872# for minimum weight or optimization for fully stressed design "Kikuchi and
Horimatsu\ 0883 ^ Donald\ 0883#[ In the documented methods on sensitivity\ the gradients for
displacements:stresses for a particular set of loading conditions are obtained by either _nite
di}erence "Khot\ 0883 ^ Haug et al[ 0874 ^ Brayton and Spence\ 0874# or from principle of virtual
forces "Akin\ 0883 ^ Donald\ 0883#[ These coe.cients do not truly represent the sensitivity of
~exibility in a global direction\ which should be independent of external loading[

In this section\ a theorem which relates changes in the diagonal reciprocal ~exibility coe.cient
in any particular direction due to changes in sti}ness of a speci_c branch will be derived for two
distinct cases[ First case is pertinent to in_nitesimal changes in branch sti}nesses and the second
is pertinent to _nite changes in branch sti}nesses[
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Case 0 ] In_nitesimal chan`es in branch parameter
A signi_cant advantage of this part of the theorem lies in determination of sensitivity of ~exibility
coe.cients in global directions corresponding to variations in branch sti}nesses\ through a single
solution to the equations governing the model[

Statement of the theorem ] Partial derivative of the reciprocal of a `eneralized dia`onal ~exibility
coef_cient\ {fjj|\ in any direction\ {j |\ with respect to the reciprocal of ~exibility\ {fbk|\ of any branch\
{k|\ is equal to the square of the ratio of the correspondin` branch deformation\ {dk|\ and displacement\
{dj|\ in the direction {j|[
i[e[

1"0:fjj#
1"0:fbk#

�
d1

k

d1
j

"29#

which can also be written as ]

1fjj

1fbk

�
f 1

jjd
1
k

f 1
bkd

1
j

"20#

Proof ] Either from PQW ði[e[ from eqn "0#Ł or independently from the equation relating the strain
energy and the work done by external loads\ we get

"F#T"d# � "P#T"d# "21#

Replacing the external forces in terms of corresponding displacements and ~exibilities and
further restricting the loading to one direction "{j|# only\ this equation reduces to ]

"d#T ð fbŁ−0"d# � d1
j :fjj "22#

Recognizing the diagonal nature of ð fbŁ and taking partial derivative of eqn "22# with respect to
any branch ~exibility fbk\ yields ]

1

1"0:fbk# $ s
B

k�0

"d1
k :fbk#%�

1

1"0:fbk#
ðd1

j :fjjŁ "23#

or

d1
k � d1

j

1"0:fjj#
1"0:fbk#

"24#

since\ dj can be safely assumed not to vary due to in_nitesimal changes in fbk[ This results in eqn
"29# and\ hence\ eqn "20#[
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Table 6
Sensitivity of diagonal ~exibility coe.cients

"a# Load displacement data for the three load cases of basic system
Sr[ P0 P1 P2 d0 d1 d2 d0 d1 d2 d3 d4 d5

0 099 9 9 1[94 9[54 0[90 1[94 −0[39 9[26 −0[90 −0[92 −9[54
1 9 199 9 0[29 1[25 0[02 0[29 0[95 −0[12 −0[20 −9[06 −1[25
2 9 9 049 0[41 9[74 1[09 0[41 −9[56 0[13 −1[09 9[46 −9[74
Kb0 � 09 ^ Kb1 � 19 ^ Kb2 � 29 ] in kN:mm
Kb3 � 39 ^ Kb4 � 49 ^ Kb5 � 59 ] in kN:mm

"b# Parameters of the basic and the perturbed systems
System Kb0 Kb1 Kb2 Kb3 Kb4 Kb5 0:f00 0:f11 0:f22

Basic 09[9 19[9 29[9 39[9 49[9 59[9 37[751 73[537 60[437
0 09[2 19[9 29[9 39[9 49[9 59[9 38[051 73[627 60[694
1 09[9 19[5 29[9 39[9 49[9 59[9 38[039 73[658 60[598
2 09[9 19[9 29[8 39[9 49[9 59[9 37[789 73[789 60[753
3 09[9 19[9 29[9 30[1 49[9 59[9 38[043 73[808 60[636
4 09[9 19[9 29[9 39[9 40[4 59[9 38[127 73[544 60[547
5 09[9 19[9 29[9 39[9 49[9 50[7 38[939 75[337 60[727

"c# Validation of ~exibility gradient formula for in_nitesimal changes
Branch numbers ] K

Direction
" j# 0 1 2 3 4 5

0 I 0[999 9[355 9[921 9[135 9[143 9[090
II 0[999 9[352 9[920 9[132 9[140 9[988

1 I 9[290 9[192 9[161 9[118 9[994 0[999
II 9[299 9[191 9[157 9[115 9[994 0[999

2 I 9[416 9[092 9[243 0[999 9[964 9[053
II 9[412 9[091 9[240 9[888 9[963 9[050

I : d1
k :d

1
j ^ II : 1"0:fjj#:1"0:fbk#

Illustration ] The process of illustrating sensitivity theorem for in_nitesimal changes ði[e[ eqn "29#Ł
in reciprocal diagonal ~exibility coe.cients is presented for the example problem in Table 6[ Table
6"a# presents the global displacement and branch deformation data of the basic system pertinent
to three load cases of single load applications[ The ~exibility data needed for illustrating changes
in each of the six branches are obtained by inverting the six sti}ness matrices "generated by
e}ecting 2) perturbation of the basic sti}ness coe.cients in only one of the branches at a time#
are given in Table 6"b#[ While Table 6"c# provides comparison of ~exibility gradients obtained
from displacement data from Table 6"a# ði[e[ case I basing on the right hand side expression of eqn
"29#Ł and the ~exibility data from Table 6"b# ði[e[ case II\ basing on left hand side expression of
eqn "29#Ł[ This establishes a sensitivity theorem\ as the di}erence in these expressions is small[
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Case 1 ] Finite chan`es in branch parameter
This part of the theorem will be useful in deriving a new Design Equation for problems involving
displacement constraints[ This equation is unique in the sense that with the use of this equation
one can determine a design which closely "in some cases exactly;# satis_es the displacement
constraints[
Statement of the theorem ] The ratio of difference in the reciprocal of ~exibility in any speci_c
`eneralized direction between a pair of "TSS#m and "TSS#n\ where "TSS#n is derived from "TSS#m by
alterin` the ~exibility of any particular branch\ and the difference in the reciprocal of ~exibility of
the altered branch is equal to the ratio of the product of deformations in the chosen branch of the two
TSS and the product of their `eneralized displacements in the chosen direction[

0:" fjj#m−0:" fjj#n

0:" fbk#m−0:" fbk#n

�
dkmdkn

djmdjn

"25#

Proof ] Assuming that the systems comprise of sti}ness elements only and replacing forces by
corresponding displacements and ~exibilities when only direction {j| is active\ eqn "1# reduces to ]

"d#T
m ð fbŁ−0

m "d#n−"d#T
n ð fbŁ−0

n "d#m � djmdjn ð0:" fjj#m−0:" fjj#nŁ "26#
If ~exibility of only branch\ {k|\ is altered keeping the rest of branch ~exibilities the same in both

systems {m| and {n|\ then this equation reduces to ]
"dk#m"dk#n ð0:" fbk#m−0:" fbk#nŁ � djmdjn ð0:" fjj#m−0:" fjj#nŁ "27#

which after rearranging the terms\ takes the form of eqn "25#\ proving the statement[ If the systems
are obtained by minor perturbations\ eqn "25# reduces to eqn "29# in the limit[

It may be relevant to note that the right hand side of eqn "27# represents di}erential Quasi Work
expression ]

"DW#mn � Wmn−Wnm "28#
Illustration ] The theorem is illustrated for the example problem by doubling the sti}ness of its
third branch[ Results are presented in Table 7 in which entries in the last two columns are equal\
thus completing the illustration[

Table 7
Flexibility variations for _nite changes in branch sti}ness

"TSS#n obtained by changing Kb2 to 59 kN:mm

Direction Load

in the basic system "TSS#m see Table 6

dkm dkn

djm djn" j# Pj

0
" fjj#m

−
0

" fjj#n

0
" fbk#m

−
0

" fbk#n

"dj#n "d2#n "0:fjj#n

0 099 1[9075 9[1441 38[4391 9[912 9[912
1 199 1[1931 −9[7474 89[6257 9[192 9[192
2 049 0[7683 9[7690 68[7037 9[165 9[165

"TSS#m ] Kb0 � 09 kN:mm ^ Kb1 � 19 kN:mm ^ Kb2 � 29 kN:mm
Kb3 � 39 kN:mm ^ Kb4 � 49 kN:mm ^ Kb5 � 59 kN:mm
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7[ Design equation based on displacement constraints

Recognizing the need for a good starting point for any optimal iterative design scheme\ a
systematic method of obtaining such a point is pursued here[ It is based on an estimated pair of
starting points for the design parameters "which represent a pair of TSS of the model# and utilizes
displacement constraints in active directions[ It yields a starting point which more or less satis_es
all the active displacement constraints[

Finding such a starting point is in itself an optimization problem in the hyperspace de_ned by
branch sti}nesses and limited by the hyperplanes formed by essential constraints[ Objective func!
tion for which can be de_ned as the absolute value of the sum of di}erence in the work done by
external forces "a# while going through computed displacements and "b# while going through
the corresponding constraint values\ computed for all the directions of essential displacement
constraints[

Consider a model subjected to external loading\ "P#\ which has to satisfy essential displacement
constraints\ "dco# "of order r#\ in some of the directions[ It may be relevant to note that as the
maximum displacement occurs in one of the active directions\ constraints on displacements in
active directions will only be considered as essential[ If some of the active direction have no
constraints\ the vector of displacement constraints is made up by assuming dcj � dj\ to facilitate
ease in handling and ensuring that "dco# is augmented to become "dc# of order {A| "where {A|
represents the number of active directions#[ The corresponding optimization problem can be
mathematically stated as under ]

Objective function ]

DW � b s
A

j�0

Pj"dj−dcj# b "39#

Constraints ]

dj ¾ dcj j � 0\ A "30#

where

dj � `" fb\ P#

In order to achieve this objective let us de_ne a pair of TSS\ viz "TSS#m and "TSS#n\ for the
model subjected to the given loading\ which may be or may not satisfy the constrains[ Let us
assume that there exists another system\ "TSS#r\ a linear objective of the given systems\ which
represents a near optimum design[ In arriving at such a system an assumption is made that each
of its branch elements can be obtained on the basis of proportional contributions to the objective
function[ Mathematically this assumption can be stated as

"Dw#nrk

"Dw#mrk

�
"Dw#nr

"Dw#mr

"31#

where\ "DW#nrk and "DW#mrk are de_ned as the contributions due to branch {k| to "DW#nr and
"DW#mr\ respectively[ Considering pairs of TSS {n| and {r| as well as {m| and {r|\ it follows from eqn
"27# and eqn "28# that
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"0:" fbk#r−0:" fbk#n#"dk#r"dk#n �"DW#nrk "32#

and

"0:" fbk#r−0:" fbk#m#"dk#r"dk#m �"DW#mrk "33#

Dividing eqn "32# by eqn "33# and utilizing eqn "31#\ we obtain

"0:" fbk#r−0:" fbk#n#
"0:" fbk#r−0:" fbk#m#

"dk#n

"dk#m

�
"DW#nrk

"DW#mrk

�
"DW#nr

"DW#mr

"34#

or

"0:" fbk#r−0:" fbk#n#
"0:" fbk#r−0:" fbk#m#

0
ak

�
0
bk

"35#

where

a �"dk#m:"dk#n

and

b �"DW#mr:"DW#nr

Solving eqn "35# for "0:fbk#r we obtain the {Design Equation| ]

"0:fbk#r �"0:fbk#n¦ð"0:fbk#n−"0:fbk#mŁ ðak:"b−ak#Ł "36#

With the help of which\ values of the branch ~exibilities are obtained by choosing "d#r such that
displacement values in all the constrained directions are exactly equal to the stipulated constraints[
This will liquidate the di}erence in the work done arising out of partial non!satisfaction of the
constraints and thereby yield the optimum value of the objective function[

The above mechanism of approximating the optimum becomes more error prone if some of the
active directions are unconstrained[ This discrepancy is due to the fact that the contribution to
DW in eqn "39# for such directions is ignored in the absence of a criterion for computation[ This
implies that the displacement constraints in the active direction are assumed to be di}erent\ while
computing DW for each of the two systems\ which is the root cause for error[

Some essential aspects of desi`n equation
Some of the important facets of Design Equation are as follows ]

"0# This method of obtaining an improved starting point commences with an estimated pair of
starting points\ which while representing the physical model\ may or may not belong to the
feasible region of the design hyper!space[

"1# The improved design point is a linear combination of the chosen estimated pair of starting
points and is obtained with the help of {Design Equation| ði[e[ eqn "36#Ł[

"2# If in a model\ ~exibility of a branch is desired to be _xed by some other considerations ^
then choosing identical ~exibility coe.cient of this branch for the estimated pair of starting
points ensures that it would remain the same in the resulting TSS[

"3# If all branch ~exibilities of "TSS#m are proportional to those of "TSS#n\ then ~exibilities of
derived system\ "TSS#r\ are also proportional to ~exibilities of the chosen pair of TSS[
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Table 8
Determination of design point "TSS#r

Branch no[ "Kb#n "Kb#m "d#n "d#m a "Kb#r

0 39[99 099[99 7[2187 2[9026 9[2507 041[1837
1 19[99 54[99 −9[7377 −9[3380 9[4180 75[9204
2 14[99 64[99 1[1701 9[6390 9[2133 018[9261
3 29[99 84[99 −8[6502 −2[2936 9[2275 048[3988
4 24[99 094[99 0[3213 9[1809 9[1921 334[2462
5 49[99 049[99 −6[3790 −1[4535 9[2318 135[5316

"P#T � "299 299 399# kN
and utilising DW from Table 09\

b �"DW#m:"DW#n � 9[0574

Table 09
Evaluation of design equation application

Systems "TSS#n "TSS#m "TSS#r

d0 value 7[2178 2[9026 0[8254
) error� "205[4# "49[6# "2[06#

d1 value 6[3790 1[4535 0[4574
) error� "287[6# "60[9# "3[46#

d2 value 8[6502 2[2936 0[8851
) error� "277[0# "54[1# "9[077#

DW 5686[1 0034[2 9[9999

� With respect to their constraint values "dc#T � ð1[9 0[4 0[9Ł mm

Illustration ] In order to illustrate the computation of the starting design point\ a model conforming
to the topological layout given in Fig[ 0"A# is utilized[ The initial guess values of branch sti}nesses
of "TSS#n and "TSS#m along with other relevant data and resulting parameters of the system "TSS#r

are given in Table 8[
E}ectiveness of application of the design equation is illustrated in Table 09 by providing a

comparison of the global displacements and the objective function for all the three systems[
Numbers in parenthesis are percentage errors in displacements with respect to the corresponding
constraint values[ As can be seen that the displacements in "TSS#r are very close to the required
constraint values[ In this example\ units of sti}ness\ displacement and DW are chosen as kN:mm\
mm and Nm\ respectively[
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8[ Conclusions

The simpli_ed theory for analysis and design of structural models "de_ned in terms of discrete
element models with single DOF:node# is presented[ A number of theorems and formulae were
derived to facilitate ]

, Locating maximum displacement directions for eliminating spurious constraints and for aiding
conservative preliminary design process by reduction of number of displacement constraints[

, Simpli_ed computation of relative ~exibilities " for determination of strong:weak directions in a
structure#[

, Calculation of external loads corresponding to a prescribed:permissible set of branch forces for
design evaluation[

, Determination of upper bounds for global diagonal ~exibility coe.cients based on branch
parameters[

, Evaluation of sensitivity of global ~exibility coe.cients with respect to branch parameters for
carrying out e.cient design iterations[

With the help of sensitivity analysis " for _nite changes in branch:element parameters#\ an
important equation termed as {Design Equation| was derived[ This provides a good starting design
point for problems with active displacement constraints[

The scope of present theorems need extension considering elements other than sti}ness and
constraints other than on displacements[ Yet\ the sensitivity theorem has opened up new avenues
for evolving a new {Predicted Correction Algorithm| useful for design and forming an integral part
of an overall activity termed as Computer Aided Model Based Design "CAMBD#[ A pilot version
of which has already incorporated these theoretical developments "Prasad et al[\ 0884# and is in
the advanced stage of testing[ Where the examples include the design of a shear building consisting
of columns "modelled as shear spring# and ~oors modelled as lumped masses\ etc[ Further work
concerning its extension to 1!D structures involving automobile vehicle structures\ modelling is in
progress[ However\ further work is needed for extending the methodology to 2!D structural
systems[
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